Jumat, 24 Juli 2015

4 - 20 mA bagian 2



Mengapa menggunakan 4-20 mA  ? Bagaimana sih sejarah 4 – 20 mA dalam dunia istrumentasi?


Mari kita lihat……………….

Flashback Dulu Ya

Dahulu industri pemanas, ventilasi dan pengkondisian udara (Heating, ventilating dan air conditioning; HVAC)  telah menggunakan control pneumatic (control udara). Dalam system ini,  rasio controller, PID controller, sensor suhu dan actuator digerakkan oleh udara yang di kompressi. Pada sistem itu 3-15 pound/inche2 adalah standar modulasinya, 3 psi untuk “zero” dan 15 psi untuk “100%”. Setiap tekanan di bawah 3 psi adalah “dead zero” dan kondisi alarm.

Pada tahun 1950-an, kontrol listrik dan elektronika berkembang. Bentuk sinyal yang baru 4-20 mA berusaha menyamai sinyal pneumatic 3-15 psi. Bentuk arus sinyal ini cepat menjadi metode pilihan karena kabel lebih mudah di pasang dan dipelihara dibandingkan dengan jalur tekanan pneumatic. Selain itu dapat mengirimkan arus sinyal pada jarak yang jauh dan membutuhkan energi yang jauh lebih rendah. Anda tidak lagi membutuhkan compressor 20-50 tenaga kuda, dan dengan elektronik kita dapat menambah algoritma control yang rumit.


Teori seputar 4 – 20 mA

Arus Loop  4-20 mA sangat berpeluang menjadi sinyal standar sensor, yang ideal untuk menjadi transmisi data, karena ketidak pekaannya terhadap noise (gangguan) listrik. Dalam loop 4-20 mA ini arus sinyal mengalir ke semua komponen, mengalirkan arus yang sama bahkan pada sambungan kabel yang kurang sempurna sekalipun. Semua komponen dalam loop mengalami tegangan jatuh karena arus sinyal yang mengalir melaluinya. Arus sinyal tidak terpengaruh oleh tegangan jatuh tersebut selama tegangan listrik power supply lebih besar dari pada jumlah tegangan jatuh dalam loop pada arus sinyal maksimum 20 mA.


Dua “R kabel” merupakan simbol yang menggambarkan perlawanan kabel dari transmitter ke catu daya dan Rpenerima (kontroler).
Pada Gambar diatas , arus disuplay dari catu daya melalui kabel ke transmitter dan transmitter mengatur aliran arus dalam loop. Arus yang diizinkan oleh transmitter disebut arus loop yang sebanding dengan parameter yang sedang diukur. Arus loop mengalir  kembali ke controller melalui kabel, dan kemudian mengalir melalui resistor Rpenerima ke tanah dan kembali ke catu daya. Arus yang mengalir melalui Rpenerima ini menghasilkan tegangan yang mudah diukur dengan input kontrol analog. Untuk resistor 250Ω ,tegangan akan terukur 1 VDC pada 4 mA dan 5 VDC pada 20 mA.

Komponen-komponen pada Loop Arus 4-20 m


Catu Daya

Catu daya untuk transmitter 2-wire harus selalu DC,  karena perubahan arus merupakan parameter yang sedang diukur. Jika daya AC yang digunakan, arus dalam loop (lingkaran) akan berubah sepanjang waktu. Oleh karena itu, perubahan arus dari transmitter akan mustahil untuk dibedakan dari perubahan arus yang disebabkan oleh catu daya AC.
Untuk loop 4-20 mA dengan transmitter 2-wire, catu daya umumnya  dipasok dengan tegangan 36 VDC, 24 VDC, 15 VDC dan 12 VDC.
Loop Arus yang menggunakan transmitter 3-wire dapat menggunakan power supply AC atau DC. Catu daya AC yang paling umum adalah transformator kontrol 24 VAC. Pastikan untuk memeriksa literatur instalasi transmitter untuk kebutuhan tegangan yang tepat.

Transmitter

Transmitter adalah jantung dari sistem sinyal 4-20 mA. Merubah besaran fisik seperti suhu, kelembaban atau tekanan menjadi sinyal listrik. Sinyal listrik yang proporsional terhadap suhu, kelembaban atau tekanan yang diukur. Dalam loop 4-20 mA, 4 mA merupakan titik pengukuran terendah dan 20 mA merupakan titik tertinggi.
Beberapa transmitter saat ini menggunakan range catu daya, misalnya 15-24 VDC untuk transmitter kelembaban atau 7-40 VDC untuk transmitter suhu .Tegangan rendah adalah tegangan minimum yang dibutuhkan untuk menjamin operasi yang tepat dari transmitter. Tegangan tinggi adalah tegangan maksimum transmitter untuk dapat bertahan dan beroperasi dengan spesifikasi yang ditetapkan.

Resistor Penerima

Adalah jauh lebih mudah untuk mengukur tegangan daripada untuk mengukur arus. Oleh karena itu, banyak sirkuit loop saat ini (seperti rangkaian pada gambar 1) menggunakan Rpenerima untuk mengubah arus menjadi tegangan. Dalam Gambar 1, Rpenerima adalah sebuah resistor presisi 250Ω. Arus yang mengalir melaluinya akan menghasilkan tegangan yang mudah diukur oleh input kontrol analog. Untuk resistor 250Ω, tegangan akan terukur 1 VDC pada arus loop 4 mA dan 5 VDC pada arus loop 20 mA. Rpenerima yang paling umum dalam sebuah loop 4-20 mA adalah 250Ω, namun tergantung pada aplikasinya, resistor 100Ω sampai 750Ω dapat digunakan juga.

  Kabel

Mengirim arus melalui kabel menghasilkan drop tegangan yang  proporsional dengan panjang dan tebal (ukuran) darikabel tersebut. Semua kawat memiliki tahanan, biasanya dinyatakan dalam ohm per 1.000 feet.


Drop tegangan dapat dihitung dengan menggunakan hukum Ohm :
Ket:
E = tegangan resistor dalam volt;
I = arus yang mengalir melalui konduktor dalam ampere;
R = resistensi konduktor dalam ohm.
* Tahanan Kabel Tembaga @ 20 ° C (68 ° F) Amerika
Ketidakpekaan terhadap Gangguan(noise) Listrik

Keuntungan terbesar menggunakan loop arus untuk transmisi data adalah ketidakpekaan suatu loop arus terhadap gangguan (noise) listrik. Setiap transmitter saat ini memiliki beberapa resistansi output yang terkait dengannya. Idealnya, resistansi output transmitter adalah tak terbatas. Namun, transmitter saat ini sudah sangat besar,  tetapi tidak terbatas pada resistensi output. Misalnya, transmitter suhu memiliki resistansi output 3.640.000 Ohm atau 3,64 MΩ. Resistansi keluaran ini dapat direpresentasikan sebagai resistor dalam skema rangkaian gambar dibawah ini  

 
 
Skema rangkaian pada gambar diatas menunjukkan komponen tahanan dari sebuah loop arus 4 -20 mA dengan sumber ganguan (noise) yang ditambahkan ke loop. Karena resistansi keluaran tinggi dari pemancar (3,64 MegΩ), sebagian besar dari tegangan noise drop (jatuh)  di transmitter, dan hanya sebagian kecil drop di Rpenerima. Sejak kontroller dibuat hanya melihat tegangan di Rpenerima, tegangan noise hampir tidak berpengaruh pada kontroler.


Misalnya :

Jika sumber noise pada gambar diatas memiliki amplitudo 20 Volt, maka tegangan gangguan yang terlihat pada  Rpenerima hanya 0,0014 Volt.
Hal ini karena tegangan gangguan yang diukur pada setiap resistor adalah sama dengan Ohm dari resistor dibagi dengan total ohm pada rangkaian dikalikan dengan tegangan gangguan.

 
Tegangan Rpenerima pada loop 20 mA saat ini adalah lima volt. Menambahkan 0,0014 volt noise hanya 0,028% dari lima volt, merupakan suatu kesalahan yang tidakberarti.
Prinsip yang sama berlaku juga untuk tegangan fruktuasi dalam power supply. Impedansi output tinggi transmitter suhu menolak kesalahan karena fruktuasi catu daya. Jika catu daya dari gambar diatas adalah bervariasi sehingga tegangan jatuh di transmitter bervariasi 7-24 VDC, output hanya merubah arus sebesar 0,000005 amper, atau 5 mikro-amper. Ini sama hanya 0,00125 volt di resistor Rpenerima 250Ω, yang merupakan fruktuasi yang tidak berarti.

Tergantung pada sumber saat ini untuk loop, perangkat dapat diklasifikasikan sebagai aktif (penyediaan daya atau supplying Power) atau pasif (mengandalkan kekuatan loop). Misalnya, perekam grafik dapat menyediakan tenaga loop untuk transmitter tekanan. Transmitter tekanan memodulasi arus pada loop untuk mengirim sinyal ke strip chart recorder, tetapi tidak dengan sendirinya menyuplai power ke loop dan begitu juga pasif. (Sebuah instrumen 4-wire memiliki masukan power supply terpisah dari loop arus) loop lain mungkin berisi dua perekam pasif grafik, transmitter tekanan pasif, dan baterai 24 V.. (Baterai adalah perangkat aktif).

0 komentar: